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ABSTRACT

In scientific computation, there is often need for the derivatives as well as

the values of functions defined by computer programs. Here, it is shown how auto-

matic differentiation can be carried out in a modern computer language which permits

user-defined operators and data types. The specific language used is PASCAL-SC, and

differentiation is implemented for variables of type GRADIENT, which consists of the

value of a function of n real variables and its gradient vector of first partial

derivatives with respect to the independent variables. Calculations of the results

of operators or functions applied to GRADIENT variables are carried out according

to the well-known rules for e- aluation and differentiation of sums, differences, pro-Iducts, and so on. Since the differentiation is performed at compile time, the code

produced is comparable in compactness and execution time to that obtained if numerical

approximations are used for derivatives, and the theoretical and practical problems

associated with numerical differentiation are avoided. PASCAL-SC source code is given

for the necessary operators and standard functions, and it is shown how to prepare

code for arbitrary differentiable functions to add to the library if desired. The ef-

fectiveness of the use of type GRADIENT is shown by an example of the solution of a

system of nonlinear equations by Newton's method.
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SIGNIFICANCE AND EXPLANATION

In scientific computation, there is often need for the derivatives as well as

the values of functions defined by computer programs. Examples include calculations

of sensitivity and error analysis, unconstrained and constrained optimization, and

the solutions of nonlinear systems of equations. Modern computer languages permit

user-defined operators and data types, so the well-known rules for differentiation

can be automated. Here, this is done in the language PASCAL-SC (PASCAL for Scientific

Computation), which also offers the advantages of extremely accurate floating-point

arithmetic operations for real and complex numbers and intervals, and vectors and

matrices over these numerical data types. For the purpose of differentiation, a

data type called GRADIENT is introduced. A datum of type GRADIENT is a record of

the form (f(x),(f 1 (x),...,f nx))), i.e., consisting of the value at some point x -

(xl,.. . ,x n ) of some function f of n variables, together with the values at x of its

first n partial derivatives f.i = af/axi' i = l,...,n. This requires specification

of all allowable operations involving this data type. For example, the multiplication

operator * is extended to the variables f and g of type GRADIENT by the prescription

f*g = (f(x)*g(x),(f(x)*g1 (x)+fl(x)*g(x),...,f(x)*gn (x)+fn (x)*g(x))). That is about

all there is to it: The rules for evaluation and differentiation are applied to ex-

pressions involving GRADIENT variables to obtain the correct value and gradient vec-

tor for the result. Since the differentiation is done at compile time, the code pro-

duced is compact and efficient, and the practical and theoretical difficulties as-

sociated with numerical differentiation are avoided. As shown by an example, numer-

ical differentiation is inaccurate and unstable even in favorable cases, and its use

can render the results of a program meaningless without the user being aware of the

loss of significance. Thus, when software for analytic differentiation is available,

it is foolish and perhaps even dangerous to use numerical approximations to deriva-

tives.

PASCAL-SC source code is given for the necessary operators and basic standard

functions. It is shown how other functions can be added easily to the library, if

one knows rules for their differentiation or how to express them in terms of differ-

entiable functions. An example of the effectiveness of the use of type GRADIENT is

its use in the solution of nonlinear systems of equations by Newton's method, which

is illustrated by a specific calculation.

The responsibility for the wording and views expressed in this descriptive sunuary
lies with MRC, and not with the author of this report.
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DIFFERENTIATION IN PASCAL-SCs TYPE GRADIENT

L. B. Rail

1. Automatic differentiation. In scientific computation, there is often

need for the derivatives as well an the values of the functions being computed. For

problems of even moderate size, however, it is usually not feasible to differentiate

all expressios appearing in the program by hand, this time-consuming process can

also result in additional errors which have to be tracked down and eliminated from

the final code. The alternatives are then to resort to the use of inaccurate numer-

ical differentiation, based on difference quotients, or to have software which will

enable the evaluation of the required derivatives automatically in the course of

the computation. The latter approach is possible because differentiation proceeds

according to fixed rules, and thus can be automated (7 1, [121, [131. The imple-

mentation of this method in a modern scientific computing language is presented

here; a brief comparison of the results of analytic with numerical differentiation

will also be given.

In order to make an efficient implementation of the method of automatic analy-

tic differentiation, a language is required in which the user can defined appropriate

da , tW, as in ordinary PASCAL, and corresponding opeaatOU on these types, which

is a feature of ALGOL-68, for example [151. The scientific computing language known

as PASCAL-SC (1 1, [191 has both of these features, and in addition, highly accurate

arithmetic based on a general theory (9 1 for real and complex numbers and intervals,

as well as vectors and matrices over these numerical types. The latter capabilities

are essential for accurate scientific computation, but do not enter explicitly into

the following discussion. Hence, the techniques discussed below are not limited to

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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PASCAL-SC, but can be adapted readily to any language in which the user can introduce

data types and operators between them. However, the accuracy and flexibility of

PASCAL-SC make it the language of choice for scientific computation.

Since the implementation method described here performs analytic differentiation

at compite time, the machine code produced is of the same order of efficiency as if

expressions for the derivatives were given in the source code or, an will be seen,

as if numerical differentiation by difference quotients is used.

2. Mathematical preliminaries. The computation of the value ft-f(xl,... ,x)

of a function of n real variables x1 •... ,xn is done on a computer by a sequence of

arithmetic operations and the evaluation of standard (or library) functions, for which

subroutines are available. From a mathematical point of view, this means that f is

the compo 0tion of a finite number of functions f, • ... ,fIs, that is,

(2.1) f :- flof2 *o... ofI

where fk is in general a function of xl,... xn and fk+l,...,f*. If, at the current

value of x:C(x9 . .. x n ), each fk is differentiable with respect to its arguments,

then f is differentiable at x, and f' (x) is obtained by the chain NAtue of differential

calculus,

(2.2) f'(x) :- f(x m-I) . . f x (1 )f'(x),

where the ' denotes Frdchet differentiation and the • matrix multiplication t131,

and

(2.3) (k) (k) (k)(23)x =W fk+lo ... of, k:=•..-.

If f'(x) exists, then it is represented by the g £ddent vectott

.af(x) 3f(x) 3fx))T(2.4) Vf~x) - " - •  "'" x
ax1  a2 axn

for details about differentiation in vector spaces, see [11], for example.

As explained in [131, once software is in place for the calculation of fk and
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f , then the (gradient) v.ectof Vf(x) can be obtained along with the vaue fx) at

x for which f is differentiable. This software is produced by the application of

tau to the expressions defining f: The rules for evaOuation of expressions

give the code for f(x), while the rules fqr di66eAenibaton give the corresponding

code for Vf(x). From a practical standpoint, all this means is that the result

of each of the operations or function evaluations involved in the computation of

f will be the intermediate value of f, and the corresponding intermediate values

of the partial derivatives of f with respect to x.,... ,x. Since the compiler

is informed of the rules for differentiation of arithmetic operations and library

functions, the machine code is built in the same sequential fashion as just for

the evaluation of f(x) only. The implementation of differentiation discussed here

is for a serial processor; as pointed out in [131, analytic differentiation can be

done even more efficiently in a parallel environment.

To see what will actually be computed in mathematical notation, suppose that

f is a function of only two independent variables y,z. (The concepts of independent

and dependent variables will be defined precisely later.) Then, if

(2.5) f :- g(y,z),

where g(y,z) denotes an expression containing only the variables yz, then the com-

ponents of Vf(y,z) are of course af/3y and af/az evaluated at the current values of

the independent variables. It can happen that the independent variables do not occur

explicitly in the expression defining f, for example, suppose that

(2.6) f :- g(uv),

where Vu(y,z) and Vv(y,z) are known. Then, as usual, one gets

( 2 .7 ) R~ . . . . V a f u + _
ay au ay av ay ' z" au az 3V Z DTIC TAB

If one or more independent variables also appear, such as in Jtificatio _

(2.8) f :-g(y,u,v),

3 ~Availability Cv-

Avail enC,O V
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then the first component of Vf is

(2.9) ay ay au y av ay'

and so on. Pormula (2.9) is sometimes called a Aem-trtn partial derivative, since

the independent variable y occurs explicitly as well as implicitly on the right side

of (2.8) [161. The important thing is that the gradients of all variables on the

right side of an assignment statement are known; the gradient of the variable on the

left side can then be calculated in terms of their components.

3. A critique of numerical differentiation. Before going on to the actual

implementation of automatic differentiation under consideration, a brief examination

will be made of the attempt to approximate partial derivatives of a function f of n

variables by means of difference quotients

(3.1) h (f,x) f(x + he(k) - f(x) U af(x)
1 h xk

where e (k ) denotes the kth unit vector. A simple analysis [14] shows that this is

an inaccurate and unstable process, even for functions of one variable, unless tech-

niques of the differential calculus are used. The user of difference quotients is

faced with the traditional dilemma facing solvers of ill-posed problems: If h is

too large, then the difference quotient is a poor approximation to the derivative

(truncation error), while if h is too small, then significant digits are lost in the

numerator since f(x) and f(x + he (k ) agree in many of the finite number of places

to which they are calculated, because differentiability of f implies its continuity.

Thus, as h becomes small, the user of difference quotients is led down the garden

path, losing one significant digit after another, until one arrives in a Cloudcukoo-

land in which the difference quotient is 0 for all h sufficiently small, regardless

of the value of the derivative sought.

This situation creates a serious problem, which is to find the optimal value

of h in the sense that as much accuracy as possible is attained in the approximation

-4-
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of the derivative, and the loss of significant digits is minimized. An analysis by

Dennis and 8chnabel [ 3 indicates the following resolution: Zf f(x) can be computed

with relative error T, then h - /T is a suitable choice in the sense that the differ-

ence quotient approximates the derivative to order T, while retaining about half the

number of significant digits in f(x), assuning the function and the derivative being

couted are roughly the same order of magnitude. To see how this works out, it will

be applied to the simple example

(3.2) f(x) :a inx 

a function of a single real variable. The method of analytic differentiation pre-

sented in this paper, of course, gives the exact result

(3.3) f' (x) 2= coo x

which will be cmared with the difference quotient

(4 sin(x + h) - sin(x)
h

for x :-1.00 and x :-1.57. The particular PASCAL-SC implementation used (18] computes

with twelve-digit decimal arithmetic; one gets

SIN(1.00) - 8.41470984808E-01,
(3.5)

SIN(1.57) - 9.99999682932E-01.

Since these values are guaranteed to be accurate to the twelve digits shown [18,

[19), it is reasonable to take r - 10 "12, from which the rule cited above indicates

that h - 10-6  is optimal. Actual results are shown in Tables 3.1 and 3.2.

The computed results bear out the theory in [3 ) to the extent that what little

-6accuracy is obtained is Maximized for the predicted value h - 10 . The value of

the exact derivative, however, is not only more accurate but also computed ga6.te

in this case, even if one also wants the value of f(x), as is usually true. The loss

of significant digits in Ah(fx) is large in the second case, where f(x) and f'(x)

differ by several orders of magnitude. If such a sacrifice of significance occurs

-5-



h hf .. 0 Significant Accurate
h A f,100)Digits Digits

101 4.97363752530E-02 11 0
10-2 5.36085981000E-O1 9 2

10-3 5.39881480000E-O1 a 3

10 - 5.40260230000E-O1 a 4

0-5 5.4029810000E-O17
10 -6 5.40302000000E-01 6 6
107 5.40300000000E-O144

10-8 5 .4000000000E-O1 4 4

109 5.40300000000E-O1 2 2
10-10 5.4000000000E-O1 2 2

101 5.OOOOOOOOOOOE-O1 1 1

10-1 O.QOOOOOOOOOE+OO 0 0

COS(1.oo) 5.40302305868E-01 12 12

Table 3.1. comparison of a h(f ,1.00) with f' (1.00).

h hf1.7 Significant Accurate

ii (f~ 157)Digits Digits

10-1 -4.91633312200E-OZ 10 0
102 -4.20364330000E-03 8 0

103 2.96327000000E-04 6 0
104 7.46330000000E-04 5 1

10-5 7.91300000000E-04 4 2

10 -6 7.96000000000E-04 3 3
-710 7.90000000000E-04 2 1

10 8.OOOOOOOOOOOE-04 I 1

10- 1.00000000000E-03 1 1

10-10 0.00000000000E+00 0 0

COS(1.57) 7.96326710733E-04 12 12

Table 3.2. comaris.n ok: ah(f 1.S7) with fl(1.57).



often enough in the program, then the final results will be rendered memaingless.

Higher-order schemes for numerical differentiation [1 I, suffer from the same prob-

lens involving cancellation of significant digits, and are additionally slower to

compute than the simple difference quotient (3.1). Use of analytic derivatives.

obtained automatically, avoids this entire area of problems. Now that advanced

languages which permit easy implementation of differentiation are available, the

future of the use of difference quotients to approximate derivatives in scientific

computation appears to be extremely limited. It should be kept in mind that the

above remarks apply to differentiation of functions defined by coputer programs.

The differentiation of functions defined by datA is a classical ill-posed problem

[171, for which the mathematical theory and computational techniques are still being

developed.

The results in Tables 3.1 and 3.2 also show the convenience of the accurate

PASCAL-SC floating-point arithmetic [183; the trailing zeros clearly indicate the

number of significant digits lost.

4. Representation of TYPE GRADIENT. Returning to analytic differentiation,

the discussion above shows that it is natural to associate with each differentiable

function f of n variables its vaLue f(x) at a point x, and its n-dimensional gAient

vectoA Vf(x) at x. This association between a real number and a real vector makes

the use of the REORD data type of PASCAL appropriate ( 6 1. (PASCAL-SC is an ex-

tension of PASCAL, so that concepts relating to the latter carry over directly.)

The standard declaration of TYPE GRADIENT then runs as follows:

CONST DIM = n;

TYPE DIRTYPE a 1..DIM;
RVECTOR - ARRAY [DINTYPE] OF REAL;

GRADIENT a RECORD F: REAL; DF: RVECTOR END;

The first three lines of (4.1) are simply the declaration of TPE RVECTOR in

PASCAL-SC; the value n in lower-case is supplied by the user. Since n-dimensional
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real vectors are ubiquitous in scientific computation, RVECTOR is considered to

be a standard numerical data type in PASCAL-SC. Thus, by following the form (4.1)

exactly, the facilities of PASCAL-SC for computation with real n-dimensional vectors

will be at one's disposal (181.

If F is of type GRADIENT, then F.F is called its eawL patt, and F.DF its

Vectot pak1t. If F represents a real function f of x = (x1 ,... ,x n ), then

(4.2) F.F = f(x), F.DF[11 - af(x) F.DP[n af(x)

in the sense that the corresponding values will be assigned to F.F and the compo-

nents of F.DF. A more precise description will be given in the following section.

5. Representations of variables and constants. In order to be able to use

automatic differentiation in a sensible way, it is essential to distinguish between

independent and dependent variables on the one hand, and constants on the other. For

the purpose of differentiation, all variables will be of type GRADIENT, while con-

stants, as will be seen, may be of type INTEGER, REAL, or GRADIENT. The necessary

distinctions will be made in more. detail below.

5.1. Independent variables. A variable V of type GRADIENT is said to

be the Kth inde pendet vwabte if the Kth unit vector e ( K) is assigned to its

vector part, that is, V.DF:-e W, or, more precisely, if

(5.1) V.DF[I:=0 for I 1 K; V.DF(K]:=I.

The user of the differentiation software described here is free to name and order

independent variables in an arbitrary fashion, subject to the ordinary limitations

of PASCAL C 61. For example, if X,Y,Z denote respectively the first, second, and

third independent variables, then

X.DF[1]:-l, X.DF[2]:=0, X.DF[3] :-0,

(5.2) Y.DF[l) :=0, Y.DFf2J:=l, Y.DF[3):O,

Z.DF[1]:=O, Z.DF(21.-O, Z.DF[3]:1,

S8 -
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define their vector parts X.DF, Y.DF, and Z.DF, respectively. If independent var-

iables appear in assignment statements, it should be only on the right side. An

assignment to the vector part of the Kth independent variable of anything but the

Kth unit vector makes that variable dependent (see below), and introduces a new,

but perhaps unspecified Kth independent variable, with respect to which subsequent

partial derivatives will be computed. Since the rules for partial differentiation

are applied rapidly and accurately, but mindlessly, during the course of the compil-

ation, the user should avoid introducing errors of this type unless a change of

variable is actually intended. In the latter case, assignments to former independent

variables of their values in terms of new ones performs the change of variables

automatically, given the corresponding expressions and subroutines. Of course, it

will often happen in the course of the computation that assignments will be made to

the value part V.F of an independent variable V.

Another possible source of difficulty in setting up independent variables would

be the assignment of the same unit vector to the vector parts of two supposedly in-

dependent variables, say V and W, that is, V.DF - W.DF. This means that V and W

would be considered to be the same variable for the purpose of differentiation, but

with possibly different values V.F and W.F. This might be used as a sneaky way of

assigning several values to the Kth independent variable, but is not recommended,

since the same purpose can be served by a straightforward method which avoids the

possibility of confusion and perhaps well-concealed errors.

5.2. Dependent variables. Variables appearing on the left side of

assignment statements are, of course, dependent on the variables appearing in the

expressions on the right side, and thus ultimately on the set of independent var-

iables chosen by the user. A dependent variable F depends on the Kth independent

variable or not according as F.DF[K) # 0 or F.DF[K] - 0.

5.3. Constants. A "variable" of type GRADIENT is said to be a Con tant

if its vector part is the n-dimensional zero vector 0 - (0,...,0), that is, C is a

9



constant if

(5.3) C.DF[I] = 0, I - l,...n.

Constants of type GRADIENT can be produced in the computation by direct assignment,

or by expressions such as F:-OX, F:-X/X, F:-X-X, and so on. It is also permissible

to have variables or literal constants of type INTEGER or REAL in GRADIENT expressions;

such quantities will be treated as constants for the purpose of differentiation.

Thus, an assignment statement such as

(5.4) F s- (K + X) **(4.4 + Y) - R - 3;

where K is of type INTEGER, R is REAL, and FX,Y are GRADIENT, is allowed. This

makes it easy to handle expressions involving real or integer-valued parameters.

If X and Y are independent variables, then only F/aX and aF/aY will be altered in

F.DF by the assignment (5.4), in addition to the value part F.F of F.

6. Definition of operators for type GRADIENT. In order to compute with

variables of type GRADIENT, the arithmetic operators and the standard and other

functions needed must be defined in order to conform to the rules for evaluation

and differentiation of real functions. Arithmetic operations +,-,*,/,** will be

considered in this section, and the standard and other functions in the next. In

what follows, K, R, RA, RB, G, GA,GB will denote generic variables of the follow-

ing types:

(6.1) VAR K: INTEGER; R,RA,RB: REAL; G,GA,GB: GRADIENT;

the operator extension in PASCAL-SC [ 11 will be employed to obtain the desired

results. The source code for the arithmetic operators is given in Appendix A.

6.1. Addition (+). A total of six definitions of the addition opera-

tors are required: One each for the various combinations

(6.2) +G, K+G, G+K, R+G, G+R, GA+GB.

For example, the unary addition (identity) operator denoted by +G is declared by

- 10 -
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OPERATOR + (G: GRADIENT) RES: GRADIENT;
(6.3)

BEGIN RES:=G END;

according to the rules of PASCAL-SC [1 1. similarly, the assignments Fe-K+G, FP:G+K,

F:-R+G, F:-G+R alter only the value part of F; one has respectively F.F-mK+G.F,

F.F:=G.F+K, F.Fs-R+G.F, F.P:-G+R, while F.DF:8G.DP in each case. Finally, corres-

ponding to GA+GB, one has the operator declaration

OPERATOR + (GA: GRADIENT;GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DITYPE;

BEGIN U.F:=GA.F+GB.F;FOR I:"1 TO DIM DO
(6.4)

U.DF[I):=GA.DF[Ij+GB.DF[I];

RES:=U

END;

since the derivative of the sum is the sum of the derivatives. In mathematical

notation, if u,v denote generic functions, c a constant, and x an independent var-

iable, the operator declarations simply implement the rules for differentiation

(6.5) l+u) " c + u) = lu + c) a. u ' (u+v) . am + u -
a axax ax ax ax ax

for the vector parts of dependent gradient variables.

6.2. Subtraction (-). Once again, operators are required for the com-

binations

(6.6) -G, K-G, G-K, R-G, G-R, GA-GB

of GRADIENT, INTEGER, and REAL types. For example, unary subtraction -G (sign

changing), is accomplished in GRADIENT statements by the operator declared by

OPERATOR - (G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;
(6.7)

BEGIN U.F:8-G.F;FOR I:z! TO DIM DO U.DF[I]:--G.DF[];RES:-U

END;

- 11 -



Here, the rules corresponding to (6.5) are

(6.9) -. (-u) - (c - U) - u - a(u V) as "-'

ax ax ax ax ax' ax1v ax ax'

which, in symbolic form, give the assignments

(K-G) .F:%K-G.F; (K-G) .DF:--G.DP; (R-G) .?:R-G.F; (R-G) .DF:-G.DFi

(6.9) (G-K) .F:-G.F-K; (G-K) .DF:-G.DF, (G-R) .FG.F-R; (G-R) .DF:-G.DF;

(GA-GD) .r:'GA.F-G9.Fs (GA-GD) .DF:-GA.DF-GB.DF;

where the vector operations are understood to be performed componentwise, as in

usual vector algebra.

6.3. Multiplication H). ere, operators must be defined for the com-

binations

(6.10) K*G, G'K, R'G, G'R, GA*GB.

The rules for differentiation of products are, of course,

(6.11) aL(C.U) . a(U.C) . .u =x(U.V) . v +u

which lead to the symbolic assignments

(K*G).F:-K*G.F; (K'G).DF:. K'G.DF; (RAG) .F:-R*G.F; (R*G).DF:-R*G.DF;

(6.12) (G*K).F:-G.F*K; (GK).DF:-G.DF*K; (G'R).F:G.F'R; (GER).DP:-G.DF*R;

(GA*G) .F-GA.F*GB.F; (GA*GB) .DF:-GA.F*GB.DF+GA.DF*GB.F;

the detailed code is given in Appendix A.

6.4. Division (/). Here, as for multiplication, the combinations for

which operators are needed are

(6.13) K/G, G/K, R/G, G/R, GA/GB.

The rules for differentiation of quotients are implemented in the forms

(6.14) x(C/U)-(c/u) au a au a aux C v(6.14) c/u, -(u/c) -c, 3-(u/v) - " ' (u/v)/v.

- 12 -
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Letting C stand for K or R, these correspond to the assignments

(C/G).F:-C/G.F; (C/G) .DF:--G.DF*(C/G) .F/G.F;

(6.15) (G/C) .F:.G.F/C; (G/C) .DF:-G.DF/K

(GA/GB) .F:-GA.F/GB.F; (GA/GB) .DF:-GA.DF/GB.F-GB.DF*(GA/GB) .F/GB.F;

in symbolic form. Explicitly, source code for the operator / between gradient op-

erands GA,GB is:

OPERATOR / (GA: GRADIENT;GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DIMTYPE;

BEGIN U.F:-GA.F/GB.F;FOR I:=1 TO DIM DO

BEGIN IF GA.DF[I] = 0 THEN U.DF[I]:u0 ELSE U.DF[I]:=GA.DF[I]/GB.F;
(6.16)

IF GB.DF[I] 00 THEN U.DFEI):=U.DF[I]-GB.DF[I]*U.F/GB.F

END;

RES:=U

END:

as given in Appendix A. Attempted division by zero produces an error interrupt.

6.5. Power (**). The power operator defined by

(6.17) U**V - Uv

is not standard in PASCAL or PASCAL-SC. Therefore, this operator is also introduced

for R**K, a REAL raised to an INTEGER power, and RA**RB for RA,RB of type REAL. An

algorithm which is recommended for this purpose [ 2 1 is based on

(6.18) U**V :- 1 0V
*LOGlO(U)

since decimal arithmetic is being used. However, experiments with integer exponents

showed that more accuracy was obtained in this case by use of the method from [13]

of repeated squaring of the base, as employed in the original differentiation soft-

ware written by Reiter 15 1. Specifically, assume that K is a non-negative

integer, and
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2 Is(6.19) K C + C1.2 + 2 2 +. + e .2

where E.- 1 and ei 0 or 1, 1 - 0.1,... ,m-1. Then,

(6.20) K.a c,-2' H* ici

where

(6.21) o- R, R, R 1 i_.,m

Thus, each factor R i is formed by squaring the previous RiI * and is multiplied into

the product (6.20) or not according as c. i 1 or 0. Hence the name "repeated squaring"

for this algorithm. For negative K. the reciprocal of the result for positive K is

taken. As pointed out in 113]. one takes R 0 1 for R ji 0, 0y - 0 for K > 0, while

0 for K S 0 leads to an error interrupt due to an attempted division by 0. The case

R -R is also handled separately in the source code, which is

OPERATOR ** (R: REAL;K: INTEGER) RES: REAL;

VAR L: INTEGER;U: REAL;

BEGIN IF K (- 0 THEN U:1I/R;IF K =0THEN U:-1

ELSE IF K 1 THEN U:zR

ELSE BEGIN L:=ABS(K);U:u1;REPEAT IF L MOD 2 -1

(6.22) THEN U:=R*U;L:=L DIV 2; IF 1 00

THEN R:-R*R UNTIL L = 0;

IF K (0 THEN U:-1/U

END;

RES:-

END;

The computation of RA**R8 for a REAL exponent RS is based on the same algorithm; one

Computes Rh'5 K for the INTEGER exponent K:-TRUNC(RD). Then, -1 c RD K <' 1, and
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(6.23) RA**RB,-(RA**K) *EXP( (-K) *LN (RA))

in which natural logarithms are used. Negative bases RA with nonintegral exponents

will lead to an error interrupt, since the logarithm function will not accept neg-

ative arguments; an attempt to compute 01 for RD : 0 will similarly be wrecked by

a division by zero error interrupt.

Once operators for integral and real powers of real arguments are in place,

the corresponding operators for gradient variables can be derived from the rules

for differentiation,

ac c-1 8u 3 u u u

(6.24) -(u ) - c(u *., -c ) - cu,ax rax

and

3v v-1 3u v v

(6.25) -(u ) " v-u *- + uV*ln(v).-.ax TX- X-

The power operator ** is thus available for the combinations

(6.26) R(*K, RA**RB, K**G, G**K, R**G, G**R, GA**
0
G.

For the forms involving GRADIENT expressions, the symbolic assignments are:

(G**C) .F:-G.F**C (G**C) .DP:-C*((G**C) .F/G.F)*G.DF;

(6.27) (C**G) .F:-C**G.F; (C**G) .DP%-(C*G.F)*LN(C)*G.DP,

(GA**G) .F:-GA.F**GB.F; (GA**GB) .DF:-(GA.F**GB) .DF+(GA**GB.F) .DF;

once again, all operations involving the vector parts .DF of the gradient variables

are to be interpreted componentwise.

6.6. Priorities of Operators. The introduction of type GRADIENT thus re-

quires the definition of 29 operatorsl six each for addition and subtraction, five

each for multiplication and division, and the seven power operators, including the

two for raising a REAL base to an INTEGER or REAL power. The latter can also be

used in ordinary numerical computation. The priorities of these gradient operators

- is -



and the two real operators defined above are as follows:

1st priority: Unary addition and subtraction ±;

2nd priority: Multiplication, division, and power ,

3rd priority: Binary addition and subtraction +,-.

As usual, parentheses are introduced to achieve the desired order of operations.

Users familiar with languages in which 0* has a higher priority than *,/ should be

particularly careful to make their desires explicit. For example, 2*3*4 means

64 - 1,296, not 2.34 - 162.

7. Standard gradient functions. The present implementation for type GRADIENT

includes the following standard function: Absolute value, and the six standard func-

tions for type REAL available in the PASCAL-SC compiler (181 (square root, exponential

(base e), natural logarithm, arctangent, sine, and cosine). All standard gradient

functions have names which begin with G: GABS, GSQRT, GEXP, GLI, GARCTAN, GSIN,

and GODS. Thus, to obtain the value and the gradient vector for the function

(7.1) f(x,y) - (xy +sinx + 4)(3y2 + 6),

11), 1121, 1131, the corresponding GRADIENT assignment statement is

(7.2) F:-(X*Y + GSIN(X) + 4)*(3*(Y*'2) + 6);

keeping in mind the equal priority of * and **. (The software described in this

paper was tested first on (7.2), for historical reasons.) The minor nuisance of

having to write GSINCX) instead of SIN(X) is balanced by the fact that the former

makes it clear that (7.2) is a GRADIENT assignment statement, and GRADIENT arguments

are expected in the expression on the right, at least for X in the sine function

and thus also in the product xeY.

For the absolute value, one has
a 1  u 3, aua

(7.3) -lul- -- if u < 0, Ljul '- if u > 0, 3 Lul undefined if u - 0.

In source code (see Appendix B), this becomes:
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FUNCTION GABS(G: GRADIENT): GRADIENT;

VAR I: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:-ABS(G.F);N:uG.F/U.F;FOR I:= 1 TO DIM DO IF G.DF[I]-0 THEN
(7.4)

U.DF[I]:-P ELSE U.DF[I]:-1*G.DF[I];

GABS:=U

END;

the nondifferentiablity of this function at zero will be indicated, if attempted,

by a division by zero error interrupt.

The remaining standard functions follow the pattern (7.4) exactly, using their

known derivatives to construct assignments to the muttpUeA (or divisor) M. In

brief form, the required assignments are

U.Fg-SQRT(G.F)i M:.2*U.F; U.DF: G.DF/MN GSQRT:-U;

U.F: WM(G.F), U.DF:-U.F*G.DFI GEXP:-U;

U.FP:LN(G.F}) U.DF:-G.DF/G.F, GLIY•U;
(7.5)

U.F:-MRCTAN(G.P), M:-I+G.F*G.F; U.DF: G.DF/M GRCTs:Ul

U.Ft-SIN(G.); M:COS(G.F); U.DF:NM*G.DFI GSIN:U;

U.FP:WCS(G.F), M:-SIN(G.F); U.DFt-M*G.DFI; GOS:-U

for the respective standard functions. An explicit assignment to K was unnecessary

in the case of the exponential and logarithmic functions.

S . User-defined functions. The user, of course, is free to add functions

(or procedures) for type GRADIENT, as long as the rules for differentiation of the

results are known explicitly. In the case of functions of a single variable, the

code (7.4) can act as a template for the required code. If the real function f

is known as FUNC, and its derivative f' is computed by DFUNC, then the gradient

function GFUNC requires the assignments

(8.1) U.F:PUNC(G.F); M:-DFUNC(G.F)i U.DF:1N*G.DF; GFUNC:-U;
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which correspond to the rule for partial differentiation

(8.2) l) a f u
3x

For example, suppose that the cosecant and its derivatives are needed. Then, fol-

lowing the pattern of (7.4), the user can introduce the function GCSC by the code:

FUNCTION GCSC(G: GRADIENT): GRADIENT;

VAR I: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:=]/SIN(G.F);M:=-COS(G.F)*U.F*U.F;FOR I:=1 TO DIM DO
(8.3)

IF G.DF[I] - 0 THEN U.DF[I]:-0 ELSE U.DF[I]:-*G.DF[I];

GCSC:-U

END;

however, since the function in question can be expressed easily in terms of available

gradient functions and operators, a more compact code is

FUNCTION GCSC(G: GRADIENT): GRADIENT;
(8.4)

BEGIN GCSC:-I/GSIN(G) END;

The coding of gradient functions and operators can also be simplified by

using the operators and functions for vector and matrix algebra available in the

PASCAL-SC library 1181. This approach is particularly useful if it is desired to

precompile the gradient operators and functions, and store the relocatable code gen-

erated in an external library. This cannot be done for the source code given in

the appendices, since most of these routines contain the global variable DIN, which

can be removed if source code for vector operations is brought into the program.

In vector form, (8.3) becomes

FUNCTION GCSC(G: GRADIENT): GRADIENT;

VAR N: REAL;U: GRADIENT;

(8.5) BEGIN U.F:-I/SIN(G.F);M--COS(G.F)*U.F*U.F;U.DF:-*G.DF;

GCSC:-U

END;

- 16 -
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with no global variables. In all cases, the assignment U.DVor:mG.DF should be

arranged so that the multiplication of the RVECTOR G.Dr by the REAL X is from the

left.

9. An example: Newton's method for the solution of nonlinear systems of

equations. Type GRADIENT has many applications in scientific computing, for exam-

ple, to sensitivity and error analysis, optimization, and the solution of systems

of nonlinear equations 1131. In order to apply Newton's method to the numerical

solution of the system of equations.

fl(xl,x 2 ,...,xn) - 0,

f 2 Cxlx 2 ,...,xn) " 0,
(9.1)

fn(XlX2,...,xn) . 0,

the nxn JacobLan matkAx J - (3fi/axj) is needed (11). Without automatic differen-

tiation, the labor involved in producing J from (9.1), not to speak of the possibility

of introduction of errors, is prohibitive even for moderate n in the general case.

However, if F1,...,FN and XI,... ,XN are of type GRADIENT, then the Ith row of the

Jacobian matrix J is simply FI.DF, the vector part of FI, assuming Xl,...,XN are

independent variables. Specifically, suppose that the PASCAL-SC type RMATRIX is

declared by

(9.2) TYPE RMATRIX = ARRAY [DIMTYPE] OF RYECTOR;

where DIMTYPE and RVECTOR are introduced as in (4.1), and the new type JACDBIAN by

(9.3) TYPE JACOBIAN a ARRAY [DINTYPE] OF GRADIENT;

further, suppose X,F are of type Jacobian, where X[I] .DF is the Ith unit vector.

Then, X1I] will be the Ith independent variable, and for

(9.4) FII:-f I(X[],X[2],...X[nJ), I - 1,...,n,

the problem of solving the system (9.1) amounts to finding the solution vector with
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components XCI).P,...,X[n].F such that F[II.F - 0, I 1,...,n.

Returning to the system (9.1). let x - (X1,...,xn) T, f(x) - (f(x),..., fn(X))
T .

Then, one step of Newton's method, starting from the approximation x
(0 ) 

to the solu-

tion x of (9.1), requires the solution of the linear system of equations

(9.5) J-6 - -f(x (0)

T()
for the co/ection vectot 6 - (61,...n), from which the next approximation x

to x is obtained as

(9.6) x (1) -x (0) + 6,

see, for example, [ll. Suppose that one has a function

(9.7) FUNCTION SOLVLN (N: DIMTYPE;A: RMATRIX;B: RVECTOR): RVECTOR;

which will give the solution of a system of N linear equations in N unknowns with

coefficient matrix A and right-hand side B. (A very accurate procedure for the

solution of linear systems called LGLP is available in PASCAL-SC [181.) The code

for one step of Newton's method with XF of type JAO)BIAN andB,D of type RVECTOR,

J (the Jacobian matrix), of type RHATRIX, is

FOR I:=1 TO DIM DO BEGIN JEI] :-F[I].DF;B[I]:=-F[I].F END; I
(9.8) D:=SOLVLN(DIM,J ,B);

FOR 1:-1 TO DIM DO X[I].F:=X[I].F+D[I];

for the general case.

It is not necessary or always convenient to introduce the type JAOBIrN.

For example, suppose that X,Y,Z are the independent variables of type GRADIENT (see

(5.2), and the GRADIENT dependent variables F,G,H are defined by

F :16"(X**4)+16* (Y**4)+Z**4-16;

(9.9) G: X**2+Y**2+Z**2-3;

H:-X**3-Yi

thus, the conditions F.F m G.F = H.F = 0 correspond to the system of equations

20-
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4 4 416X + 16y + 4 
- 16 - 0,

(9.10) x2 + y2 + 3 n0,

x 3 -y 0,

which was chosen, again for historical reasons (4 1, to test the gradient Nevtom

method program. ror the assignments (9.9), the code (9.8) is expanded for B,D of

type WVCTO, J (the Jacobian matrix) of type RNATRIX, to

J[1]]:-F.DF;J[2]:G.DF ;J[3]:H.DF;

B[1 ]:u-F.F;B[2] :-G.F;B[3]:a-H.F;

D:-SOLVLN(DN1,3J,B);

X.F:sX.F+D[(];Y.F:Y.F+D[2];Z.F :Z.F+D3];

the result of eight iterations, starting from X.F - Y.F - Z.F s, s

X.P - 0.77965760274E-01, F.F - 0.O0000000000+00

(9.12) Y.f - 6.767569705183-01, G.F - 0.00000000000E+00,

X.7 - 1.330855411622+00, H. - O.00000000003+00.

A sumary of the complete calculation is given in Appendix C. %%e results agre

exactly to the given nmber of places to the results for (9.10) obtained on a

UNIVAC 1100 in double precision, using the program NE" [ 8 1, which also employs

automatic differentiation.

10. Isplementation details. The software described in this report was im-

plemented and tested on a zilog Mcz 1/05 microcomputer. This machine has a 38o

processor and 64 kilobytes of main storage, augmented by two 80 disk drives for

single-sided, single-density hard-sectored disks. With one drive dedicated to the

system disk, this gives the user about 308 kilobytes of mass storage. The PASCAL-SC

compiler used was obtained from the Institute for Applied Mathematics, University

of Karlsruhe, Germmny, and runs under the Zilog RIO 2.06 operating system. The modest

size of the machine lim ts one to about 20x20 matrices. The program to solve the

system (9.10) required less than 5,632 bytes, showing the compactness of the software.
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11. Conclusions. By an actual example, it has been shown that a modern

computer language which permits user-defined operators and data types allows the

implementation of automatic analytic differentiation to compute the gradient vector

as well as the value of real functions of n real variables. This allows the accuracy

and theoretical advantages of the use of analytically defined derivatives in actual

computation (121, (13], and avoids the problems associated with the approximation

of derivatives by difference quotients (3 ]. In addition, source code using type

GRADIENT is easier to prepare and understand than if approximations to derivatives

are used, and the compiled code is comparable in size and execution time to that

produced in the latter case.
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APPENDIX A. SOURCE CODE FOR GRADIENT OPERATORS

(File GRADARITH.S)

A.l. Addition Operators (File GRAD-ADD.S)

OPERATOR + (G: GRADIENT) RES: GRADIENT;
BEGIN RES:=G END;

OPERATOR + (K: INTEGER;G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;
BEGIN U.F:=K+G.F;U.DF:=G.DF;RES:=U END;

OPERATOR + (G: GRADIENT;K: INTEGER) RES: GRADIENT;

VAR U: GRADIENT;

BEGIN U.F:-G.F+K;U.DF:=G.DF:RES:=U END;

OPERATOR + (R: REAL;G: GRADIENT) RES: GRADIENT;
VAR U: GRADIENT;

BEGIN U.F:-RG.F;U.DF:=G.DF;RES:=U END;

OPERATOR + (G: GRADIENT;R: REAL) RES: GRADIENT;

VAR U: GRADIENT;

BEGIN U.F:=G.F+R;U.DF:-G.DF;RES:=U END;

OPERATOR + (GA: GRADIENT;GB: GRADIENT) RES: GRAD'IENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:=GA.F+GB.F;FOR 1:-1 TO DIM DO

U.DF[I]:-GA.DFEI)+GB.DF(I);
RES:-U

END;

A.2. Subtraction Operators (File GRADSUD.S)

OPERATOR - (G: GRADIENT) RES: GRADIENT;
VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:--G.F;FOR 1:-1 TO DIM DO U.DF[I):=-G.DF[IJ;RES:-U
END;
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OPERATOR -(KC: INTEGER;G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:=K-G.F;FOR I:*1 TO DIM DO U.DF[IJ:--G.DF(IJ;RES:-U END;

OPERATOR - (G: GRADIENT;K: INTEGER) RES: GRADIENT;

VAR U: GRADIENT;
BEGIN U.F:=G.F-K;U.DF:G.DF;,RES:wU EN~D;

OPERATOR - (R: REAL;G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;
BEGIN U.F:*R-G.F:FOR I:-1 TO DIM DO U.DF(IJ:--G.DF(IJ;RES:-U END;

OPERATOR - (G: GRADIENT;R: REAL) RES: GRADIENT;

VAR U: GRADIENT;

BEGIN U.F:.G.F-R;U.DF:-G.DF;RES:-U END;

OPERATOR - (GA: GRADIENT;GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;
BEGIN U.F:6A.F-GB.F;FOR I:1l TO DIN DO

U.DF(IJ:-GA.DF(IJ-GB.DF(IJ;
RES:=U;

END;

A.3. Multiplication Operators (File GRAD MU.S)

OPERATOR * (K: INTEGER;G: GRADIENT) RES: GRADIENT;
VAR U: GRADIENT;I: DINTYPE;,

BEGIN U.F:aK*G.F;FOR I:- 1 TO DIN DO U.DF(I]:-K*G.DF(i];RES:.U END;

OPERATOR * (G: GRADIENT;K: INTEGER) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;
BEGIN U.F:G.F*K;FOR I:n1 TO DIN DO U.DF(I]:UG.DF[I*K;RES:uU END;

* OPERATOR * (R: REAL;G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:UR*G.F;FOR U-1 TO DIN DO U.DF(I]:-R*G.DF(I];RES:aU END;
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OPERATOR * (G: GRADIENT;R: REAL) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:-G.F*R;FOR I:-1 TO DIM DO U.DF[I]:aG.DF[I]*R;RES:-U END;

OPERATOR * (GA: GRADIENT;GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:-GA.F*GB.F;FOR I:-1 TO DIN DO

U.DF[I] :-GA.F*GB.DF[I ]+GA.DF[I]*GB.F;
RES:-U'

END;

A.4. Division Operators (Ple GRAD DzV.S)

OPERATOR / (K: INTEGER;G: GRADIENT) RES: GRADIENT;
VAR U: GRADIENT;I: DIMTYPE;

BEGIN U.F:-K/G.F;FOR I:-1 TO DIN DO

IF G.DF[I] - 0 THEN U.DF[I]:-I ELSE U.DF[I]:=-G.DF[I]*U.F/G.F;

RES:wU

END;

OPERATOR / (G: GRADIENT;K: INTEGER) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:-G.F/K;FOR I:=1 TO DIN DO U.DF[I]:-G.DF[I]/K;RES:-U END;

OPERATOR / (R: REAL;G: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:-R/G.F;FOR I:-1 TO DIN DO

IF G.DF(IJ - 0 THEN U.DF[I]:-O ELSE U.DF[I]:=-G.DF[I]*U.F/G.F;

RES:-U

END;

OPERATOR / (G: GRADIENT;R: REAL) RES: GRADIENT;

VAR U: GRADIENT;I: DINTYPE;

BEGIN U.F:-G.F/R;FOR I:-1 TO DIN DO U.DF[I]:-G.DF[I]/R;RES:=U END;
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OPERATOR /(GA: GRADIENT;GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;I: DII4TYPE;

BEGIN U.F:-GA.F/GB.F;FOR 1:-1 TO DIN DO

BEGIN IF GA.DF[(IJ 0 THEN U.DF(IJ:zO ELSE U.DF(IJ:=GA.DF[IJ/GB.F;
IF GB.DF(IJ 00 THEN.U.DF(IJ:-U.DF(IJ-GB.D~FI)*U.F/GB.F

END;

RES:-

END;

A.S. Power operators (File GRADPOW.S)

OPERATOR ** (R: REAL;K: INTEGER) RES: REAL;

VAR L: INTEGER;U: REAL;
BEGIN IF K (0 THEN U:1I/R;

IF K 0 THEN U:1l;
ELSE IF K 1 THEN U:-R

ELSE BEGIN L:-ABS(K);U:-1;REPEAT IF L MOD 2 a1
THEN U:-R*U;L:uL DIV 2; IF L 00
THEN R:-R*R UNTIL L 0;
IF K (0 THEN U:z1/U

END;

RES:-U

END;

OPERATOR ** (RA: REAL;RB: REAL) RES: REAL;
* VAR K: INTEGER;U: REAL;

BEGIN IF RA = 1 THEN U:-1 ELSE IF (RA-0) AND (RB )0I) THEN U:,1 ELSE
BEGIN K:-TRUNC(RB);U:=RA**K;IF RB 0K THEN

U:=U*EXP( (RB-K)*LN(RA));
END;

RES :-

END;
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OPERATOR ** (G: GRADIENT;K: INTEGER) RES: GRADIENT;

VAR I: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:-G.F**K;IF K - 1 THEN U.DF:=G.DF ELSE

IF K - 0 THEN FOR I:-1 TO DIM DO U.DF[I]:-O ELSE

IF (G.F-0) AND (K)1) THEN FOR I:-1 TO DIM DO U.DF[I]:= ELSE

BEGIN M:&K*U.F/G.F;FOR I:=1 TO DIN DO IF G.DF[I] a I THEN

U.DF[I]:=0 ELSE U.DF[I]:-N*G.DF[I]

END;

RES:-U

END;

OPERATOR ** (G: GRADIENT;R: REAL) RES: GRADIENT;

VAR I: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:*G.F**R;IF R - 1 THEN U.DF:=G.DF ELSE

IF R - 0 THEN FOR I:-1 TO DIM DO U.DF[E]:-S ELSE

IF (G.FuS) AND (R)1) THEN FOR 1:-1 TO DIM DO U.DF[I]:nO ELSE

BEGIN M:wR*U.F/G.F;FOR I:-1 TO DIM DO IF G.DF[I] a 0 THEN

U.DF[i:-O ELSE U.DF[I]:-M*G.DF[I)

END;

RES:wU

END;

OPERATOR ** (R: REAL;G: GRADIENT) RES: GRADIENT;

VAR I: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:-R**G.F;IF (R-0) AND (G.F )0) THEN FOR I:-1 TO DIM DO

U.DF[I]:-0 ELSE

BEGIN M:-U.F*LN(R);FOR I:-1 TO DIM DO IF GDF[I] I S THEN

U.DF[I]:-0 ELSE U.DF[I]:-*G.DF[I]

END;

RES:-U

END;

OPERATOR ** (K: INTEGER;G: GRADIENT) RES: GRADIENT;

VAR R: REAL;U: GRADIENT;

BEGIN R:-K;U:-R**G;

RES:-U

END;
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OPERATOR ** (GA: GRADJENT;GB: GRADIENT) RES: GRADIENT;

VAR 1: DIMTYPE;R: REAL;UV: GRADIENT;

BEGIN R:uGA.F;U:uR**GB;R:uGB.F;V:3SA**R;
FOR I:m1 TO DIM DO U.DF(IJ:uU.DFCIJ+V.DF(IJ;

RES:wU

END;
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APPENDIX B. SOURE CODE FOR STANDARD GRADIT F1I6CTIKS

(File GADFWi.S)

8.1. Absolute Value

FUNCTION GADS(G: GRADIENT): GRADIENT;

VAR 1: DINTYPE;N: REAL;U: GRADIENT;
BEGIN U.F:uABS(G.F);M:uG.F/U.F;FOR I:wl TO DIN DO IF G.DF(!] 0 THEN

U.DF[IJ:w1 ELSE U.DF[IJ:wWG.DF[IJ;

GBS:-

END;

3.2. Square Root

FUNCTION GSQRT(G: GRADIENT): GRADIENT;
VAR I: DINTYPE;N: REAL;U: GRADIENT;
BEGIN U.F:-SQRT(G.F);N:u2*U.F;FOR 1:-1 TO DIN DO IF G.DF[I] 0

THEN U.DF[IJ:=p ELSE U.DF[IJ:wG.DF[IJ/M;

GSQRT:-U

END;.

3.3. Exponential (se e)

FUNCTION GEXP(G: GRADIENT): GRADIENT;

VAR I: DIMTYPE;U: GRADIENT;

BEGIN U.F:-EXP(G.F);FOR I:=1 TO DIN DO IF G.DF(IJ 0 THEN U.DF[IJ:u9

ELSE U.DF(iJ:uU.F*G.DF(JJ;

GEXP:=U

END;

3.4. Natural Logarithm

FUNCTION GLN(G: GRADIENT): GRADIENT;
VAR I: DIM4TYPE;U: GRADIENT;
BEGIN U.F:-LN(G.F);FOR 1:-1 TO DIN DO IF G.DF(I] 0 THEN U.DF[I]:mI

ELSE U.DFfI]:-G.DF[I]/G.F;

GLN:=U
END;
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B.5. Arctangent

FUNCTION GARCTAN(G: GRADIENT): GRADIENT.

VAR 1: DIMTYPE;M: REAL;U: GRADIENT;

BEGIN U.F:uARCTAN(G.F);N:-I+G.F*G.F;FOR I:u1 TO DIN DO IF G.DF(I]

THEN I.DF(IJ:wO ELSE U.DF[I]:uG.DF[IJ/N;

GARCTAN:-U

END;

9.6. sine,

FUNCTION GSIN(G: GRADIENT): GRADIENT;

VAR 1: DINTYPE;N: REAL;U: GRADIENT;

BEGIN U.F:-SIN(G.F);M:-'COS(G.F);FOR I:1l TO DIN DO IF G.DF[IJ ]

THEN U.DF(IJ:=i ELSE U.DF(I]:*W'G.DF(I];

GSIN :U

END;

B.7. Cosine

FUNCTION GCOS(G: GRADIENT): GRADIENT;

VAR I: DINTfYPE;M: REAL;U: GRADIENT;

BEGIN U.F:-COS(G.F);M:u-SIN(G.F);FOR I:*1 TO DIN DO IF G.DF[I] p
THEN U.DF[IJ:-g ELSE U.DF[IJ:4I*G.DF(IJ

END;
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APPENDIX C. OUTPUT OF THE GRADIENT PROGRAM FOR THE

SOLUTIGN OF SYSTEM (9.10) BY NEWTON'S METhOD

INITIAL VALUES 
ITERATION NUMBER 2 (CONTINUED)

X , I.OOOOOOOOOOOE+O0 FUNCTION VALUESY - l.OOOOOOOOOOOE+O0 
F(XY,Z) - 6.45309522200E-01

Z I.OOOOOOOOOOOE+O0 
G(KY,Z) - 1.20773905300E-02

FUNCTION VALUES 
H(X,Y,Z) - 4 .86417092500E-03

F(XY,Z) - 1.70000000000E+O1 CORRECTION VECTOR
G(XY,Z) - O.OOOOOOOOOOOE+O0 DX - -8.83013113461E-03
H(XYZ) a O.OOOOOOOOOOOE+OO DY - -1.59811519852E-02

CORRECTION VECTOR 
DZ = 9 .74516049898E-03

DX a -7.08333333334E-02
DY a -2.12500000000E-01 VALUES FROM ITERATION NUMBER 3
DZ a 2 .83333333334E-01 X a 8.78244398342E-01

Y - 6 . 7 7194707318E-01VALUES FROM ITERATION NUMBER 1 Z - 1.33060980071E+ooX , 9.29166666667E-01 FUNCTION VALUESY a 7.87333333333E-O0 F(X,Y,Z) - 1.84509451000E.02

a 1 28333333333E+0 G(XyZ) -4.283365900OOE-04
FUNCTION VALUES 

H(X,Y,Z) - 2 .06 81034]OOE-04
F(X,Y,Z) - 4 .79191713930E+00 CORRECTION VECTOR
G(X,Y,Z) = 1.30451388890E-01 OX -2.78405682738E-04
N(X,Y,Z) - 1.46966869220E-02 DY a -4 .37403612547E-04

CORRECTION VECTOR 
DZ a 2.45411801068E.04

DX a -4 .20921371897E-02
DY - -9.43241406975E-02 VALUES FROM ITERATION NUMBER 4
DZ a 3 .75313068779E-02 X - 8 .77965992659E-01

Y a 6 .76757303705E-01VALUES FROM ITERATION NUMBER 2 Z 0 1.33085521251E+00
X * 8.87074529477E-01 FUNCTION VALUES
y a 6.93175859303E-01 F(XYZ) - 1.47972000000E-05Z a 1.32086464021E+00 

G(XYZ) a 
3 .2 9 050000000E-07

H(X,YZ) - 2.04196000000E-07
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ITERATION NUMBER 4 (CONTINUED) VALUES FROM ITERATION NUMBER 7

X - 8.77965760274E-01

CORRECTION VECTOR Y = 6.76756970517E-0I

DX - -2.32383617048E-07 Z - 1.33085541162E+00

DY - -3.33184805859E-07

DZ - 1.99108934899E-07 FUNCTION VALUES
F(X,Y,Z) - O.OOOOOOOOOOOE+O0

VALUES FROM ITERATION NUMBER 5 G(X,Y,Z) - O.OOOOOOOOOOOE+O0

X 8.77965760275E-01 H(X,Y,Z) = 1.0000OOOOOOOE-12

Y = 6.76756970520E-O1 CORRECTION VECTOR

Z = 1.33085541162E+00 DX = -2.09279009797E-13

FUNCTION VALUES DY = 5.16048227375E-13

F(X,Y,Z) = 1.0000000000E-1O DZ = -1.24355680269E-13

G(XY,Z) " O.OOOOOOOOOOOE+OO

H(XYZ) -1 .OOOOOOOOODOE-12 VALUES FROM ITERATION NUMBER 8

X = 8.77965760274E-01
CORRECTION VECTOR Y = 6.76756970518E-01

DX = -1.18197463333E-12 Z = 1.33085541162E+00

DY = -3.73328280534E-12

DZ = 2.67817103788E-12 FUNCTION VALUES

F(X,YZ) = O.OOOOOOOOOOOE+O0

VALUES FROM ITERATION NUMBER 6 G(X,Y,Z) = O.OOOOOOOOOOOE+OO

X = 8.77965760274E-01 H(X,Y,Z) = O.OO00000C00E+O0

Y = 6.76756970516E-01 CORRECTION VECTOR

Z = 1.33085541162E+00 DX = O.OOOOOOOOOOOE+OO

FUNCTION VALUES DY = O.OOOOOOOOOOOE+O0

F(X,YZ) - O.OOOOOOOOOOOE+OO DZ = O.OOOOOOOOOOOE+O0

G(X.Y,Z) - O.OOOOOOOOOOOE+O0

H(XY,Z) = 2.OOOOOOOOOOOE-12

CORRECTION VECTOR

* DX a -4.18558019594E-13

DY a 1.03209645475E-12

DZ = -2.48711360538E-13
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